

Photocatalytic solar discoloration of Reactive Red 84 employing titanium dioxide modified with iron

Decoloración solar fotocatalítica de Rojo Reactivo 84 empleando dióxido de titanio modificado con hierro

Raúl Campos-Gutiérrez*^a, J.M. Barrera-A.^a, Silvia L. Gelover-Santiago^b, Antonio E. Jiménez-González^c, M.d.C. Durán-Domínguez-de-Bazúa^a

^aUniversidad Nacional Autónoma de México, Facultad de Química, Departamento de Ingeniería Química, Laboratorios 301, 302, 303 de Ingeniería Química Ambiental y de Química Ambiental. Edificio E-3. Conjunto E, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Covoacán, 04510 Ciudad de México, México

^bUniversidad Nacional Autónoma de México, Facultad de Ingeniería, Campus IMTA, Jiutepec, Morelos, México

^cUniversidad Nacional Autónoma de México, Instituto de Energías Renovables, Temixco, Morelos, México

*Email (*Correo-e*): raulcampos.ita@gmail.com Phone +1 52 73 5167 8324

*Corresponding author / Autor a quien debe dirigirse la correspondencia

Received / Recibido: Enero 15, 2022

Accepted / Aceptado: Febrero 14, 2022

Abstract

In this investigation, TiO₂ and Fe/TiO₂ (0, 0.15, 0.25, 0.40 iron mass%) were compared as photocatalysts to determine its best efficiency with respect to decoloration time and mineralization measured as total organic carbon (TOC) of a textile dye, Reactive Red 84 (water solution at 50 mg/L). The catalysts were synthesized using the sol-gel method under specific conditions (450°C 2h, using titanium terbutoxide, TBT). Doping with ferric nitrate was carried out. At lab scale (first stage), the TiO₂ and Fe/TiO₂ and the controls were exposed to visible light lamps adding 1 mL/L H₂O₂ (8.6 mmol/L) and 1 g/L of each catalyst. The iron doped catalysts were activated using visible light lamps. The results obtained indicated that the best catalyst was Fe-0.25 iron mass% doped TiO₂ (TSGF-0.25, technique sol-gel Fe). Decoloration time was 120 minutes of reaction and mineralization reached approximately 50% measured as TOC after 240 minutes. At pilot scale (second stage) using a CPC (Compound Parabolic Collector) solar reactor, the best catalyst (TSGF-0.25) decolorized 100% requiring 3.87 kJ/L of accumulated energy (Q_{UV}) and degraded 77% of the initial dissolved dye measured as TOC. Visible light proved to be suitable when using iron-doped materials.

Keywords: Titania and titania iron doped catalysts, CPC (Compound Parabolic Collector), Decoloration, Photocatalysis, Reactive Red 84

Resumen

En esta investigación se compararon como catalizadores TiO_2 y Fe/TiO_2 (0, 0.15, 0.25, 0.40 % masa de Fe) para determiner su eficiencia respecto del tiempo de decoloración y la mineralización de un colorante textil, Rojo Reactivo 84 en solución acuosa a 50 mg/L, medida como carbono orgánico total (COT). Los catalizadores se sintetizaron usando el método sol-gel en condiciones específicas ($450^{\circ}C$, 2 h, usando terbutóxido de titanio, TBT). Se realizó el dopaje con nitrato férrico. A escala de laboratorio (primera etapa), el TiO₂ , Fe/TiO₂ y los controles se expusieron a lámparas de luz visible añadiendo 1 mL/L de H₂O₂ (8.6 mmol/L) y 1 g/L de cada catalizador. Los catalizadores dopados con hierro se activaron usando lámparas de luz visible. Los resultados obtenidos indicaron que el mejor catalizador era el de TiO₂ dopada con Fe-0.25% en masa (TSGF-0.25, technique sol-gel Fe). El tiempo de decoloración fue de 120 minutos de reacción y la mineralización alcanzó aproximadamente el 50% medido como TOC después de 240 minutos. A escala piloto (segunda etapa) utilizando un reactor solartipo CPC (Compound Parabolic Collector), el mejor catalizador (TSGF-0.25) decoloró al 100% requiriendo 3.87 kJ / L de energía acumulada (Q_{UV}) y degradó el 77% del colorante disuelto inicial medido como TOC. La luz visible demostró ser adecuada cuando se utilizan materiales dopados con hierro.

Palabras clave: Catalizadores de titania y titania dopada con hierro, reactortipo CPC (Compound Parabolic Collector), decoloración, fotocatálisis, Rojo Reactivo 84

Introduction

On average, from 10 to 15 per cent of the dyes are lost during the coloring process textiles (Pearce et al., 2003). Even at very low concentrations (10 to 50 mg/L) the azo dyes which are soluble in water present negative effects on the receiving environment (Bae and Freeman, 2007).

The implementation of processes of advanced oxidation as the heterogeneous photocatalysis to treat effluents with dye textiles is feasible as it has presented important results (Asiltürk et al., 2008; Barrera-Andrade, 2011; Garcés-Giraldo and Peñuela-Mesa, 2007; Gutiérrez-Díaz, 2015; Muñoz-Rábago and Rodríguez-Ortiz, 2011; Pey-Clemente, 2008). The catalysts of TiO₂ in their pure state have been widely studied, but with the aim of increasing its effects photocatalytic studies have been conducted with catalysts of TiO₂ doped with transition metal ions (Lettmann et al., 2001; Rajeshwar et al., 2001; Subramonian et al., 2017). The iron has been considered a suitable candidate for the doping of TiO₂, due to its atomic radius Fe³⁺ (0.64 Å) being similar to the Ti⁴⁺ (0.68 Å). That is why it is inferred that the iron can enter in the crystal lattice of the TiO₂ and reduce its bandwidth by increasing the efficiency of absorption of visible light. Another reason why iron is used as doping agent is its ability to act as a center of charge increasing the catalytic efficiency (Li et al., 2008; Luu et al., 2010; Nasralla et al., 2013; Yamashita et al., 2003).

On this basis, it is imperative to expand the capacity of absorption of visible light of TiO_2 for its activation in processes photocatalytic using solar reactors due to the solar radiation its component of UV light is less than 5%. There are a great number of studies that have used catalysts of TiO_2 doped with different concentrations of iron for the elimination of various pollutants as are the colorants Reactive Black 5 (Soo et al., 2016), Reactive Blue 69 (Gutiérrez-Díaz, 2015; Barrera-Andrade, 2016), Orange Bromide (Barrera-Andrade, 2011), Reactive Orange 84 (Garcés-Giraldo and Peñuela-Mesa, 2007), Reactive Red 120 and Reactive Blue 4 (Reyes-Calle, 2015), Reactive Red 198 (Moradi et al., 2016), and Reactive Orange 16 (Safari et al., 2014).

With this background, in this work there were tested different catalysts that have as an array the TiO_2 doped with different iron concentrations (0.15, 0.25 and 0.40 mass%) to determine which concentration of iron was idoneous to provide the highest percentage of mineralization of the molecule of Reactive Red 84 textile dye measured as total organic carbon (TOC).

Experimental

Materials

Titanium terbutoxide, Ti(C₄H₉O)₄ (Fluka) was used as a precursor of TiO₂. For doping ferric nitrate, Fe(NO₃)₃.9H₂O (Fermont) was employed. Hydrogen peroxide was added as oxidizing agent H₂O₂ (Fermont). Reactive Red 84 was provided by a cooperating textile industry.

TiO₂ and Fe/TiO₂ synthesis and characterization

The catalysts of TiO₂ synthesized by the technique sol-gel (TSG) were prepared by mixing 44 mL of titanium terbutoxide, 48 mL anhydrous butanol, and 28 mL of distilled water at 4°C. The mixture was stirred for 24 hr and stored at room temperature by other 24 h, dried at 100°C for 24 h, and calcined for 2 hr to 450°C with a ramp of temperature of 5°C/min. The catalysts doped with different concentrations of iron Fe/TiO₂ were prepared by the wet impregnation method. The catalysts were synthesized by sol-gel doped with 0.15, 0.25 and 0.40% iron mass%. For the preparation of the catalysts of Fe doped TiO₂ (TSGF), iron was dissolved in distilled water at pH 2 set with HNO₃ (10 v/v), then added to TiO₂ and stirred for 4 hours. Subsequently the pH was adjusted to 8.5 with NH₄OH (10 v/v) and was left to stand 7 days. Finally, the material was dried by 10 hours to 100°C and calcined at 450°C with a ramp of temperature of 5°C/min during 2 hours. The crystalline structure of

nanomaterials was determined using an X-ray difractometer (XRD Rigaku DMAX 2200, CuKa radiation λ =1.5406 Å). The catalysts were analyzed by diffuse reflectance spectroscopy (DRS) in a UV-Vis spectrophotometer (Cintra 5 UV-VIS). An integrating sphere of BaSO₄ was used as standard in the experiments of diffuse reflectance. The energy band prohibited for each catalyst was determined with the Kubelka-Munk function and the measuring range was 200 to 800 nm:

$$(R) = \frac{(1-R)^2}{2R}$$
(1)

where R is the reading of reflectance of the spectrum. Applying a linear extrapolation from $[F(R)h\nu]n$ *vs. hv*, where $h\nu$ is the photon energy and n=1/2 is managed to find the energy band gap (EG) for each catalytic converter.

Photocatalytic activity

The photocatalytic activity of the nano-catalysts was measured through the process of discoloration and mineralization of the Reactive Red 84 (RR84) molecule. The samples were measured in a spectrophotometer dual beam Cintra Model 5 UV-Vis and the mineralization of RR84 was evaluated as total organic carbon, cot in a computer Shimadzu (TOC-VCSN). The first stage at laboratory scale consisted in the evaluation of the photocatalytic activity TSG doped with iron (0.15, 0.25, 0.40% mass%) under irradiation with visible light lamps (λ = 400 to 650 nm) coupled to a filter of acrylic material. In each experiment 1 g/L of catalyst was dispersed in 600 mL of an aqueous solution with 50 mg/L of RR84 adding 1 mL/L of H₂O₂ (8.6 mmol/L) as oxidizing agent and keeping a pH value of the system at 3.0 set with HNO₃ to 10 v/v (Merck). Before the reaction stage, solutions were set for 30 min in total darkness to reach equilibrium adsorption-desorption with the surface photocatalyst. The reactor containing the colored aqueous solution of RR84 the catalyst and the hydrogen peroxide was taken to complete a time of irradiation of 240 min (Fig. 1a). The second stage consisted in the evaluation of the photocatalytic activity the best catalyst (TSGF-0.25) under solar irradiation using a Compound Parabolic Collector (CPC) reactor of 3 L with glass tubes with a mass flow of 20 L/min generated by a submersible pump and a tank of recirculation (Fig. 1b). The conditions in this experiment were the same as at the laboratory level.

Fig. 1b. Compound Parabolic Collector (CPC) solar reactor of 3 L with glass tubes to test the catalysts on an aqueous solution of Reactive Red 84 (Campos-Gutiérrez, 2017)

Results and Discussion

Photocatalysts characterization

Fig. 2 shows XRD patterns of the nanocatalysts TiO_2 and Fe/TiO_2 . TSG presented as the majority anatase phase, being to 2θ =25.26, 37.801 and 48.041°, corresponding to the planes of reflection (1 0 1), (0 0 4) and (2 0 0). Brookite phase was present to the 2θ =38.0° with index (1 3 1) with peaks of low intensity. The measurements obtained by XRD showed that the catalysts TSG and TSGF (0.15, 0.25, 0.40 mass% Fe) showed the same crystalline phases. It was not observed another phase attributed to the iron oxides probably due to the low concentrations of iron tested.

The optical properties of the catalysts TiO_2 and Fe/TiO_2 were examined with diffuse reflectance spectroscopy UV-VIS (DRS). Fig. 3 shows the results of DRS of catalysts TSG and TSGF-0.25. It is noted that the absorption edge of the catalysts Fe/TiO_2 in comparison with the TiO_2 without doping extends toward the visible light.

Fig. 2. XRD patterns of the Fe doped TiO_2 and TiO_2 catalysts

Fig. 3. UV-Vis diffuse reflectance spectra for the Fe doped TiO₂ and TiO₂ catalysts

The absorption edge extends more toward the visible spectrum as the concentration increases. This effect might be due to the electronic transition of the orbiting Fe3d to the conduction band of TiO_2 . Despite that doping with iron does not alter the position of the TiO_2 valence band (VB), this introduces new levels of energy (Fe³⁺/Fe⁴⁺) of the transition of the ions within the TiO_2 prohibited energy band (Moradi et al., 2016).

The band gap energy (EG) of the catalysts was calculated by linear extrapolation between [F(R)E]1/2 where (E = hv) and hv to [F(R)E]1/2 = 0.

For the catalysts TSG the band gap energy for materials doped with 0.0, 0.15, 0.25 and 0.40 mass% was 3.16, 3.11, 3.10, and 3.06, respectively. It was found that by increasing the concentration of iron on the TiO_2 energy band gap decreases. The doping with iron decreases the band gap energy due to the level of catch of electrons between the valence band and the conduction band (Wu, 2008).

Decoloration and mineralization of RR84 using TiO₂ and Fe/TiO₂ at the laboratory level

The time of equilibrium adsorption-desorption of RR84 on the TiO_2 and Fe/TiO_2 was evaluated in terms of the time of contact between the dye and the catalysts. The time of adsorption was 30 min. Figure 4 represents the profiles of discoloration of the RR84 with TiO_2 and Fe/TiO_2 .

The photocatalytic activity of materials TiO_2 and Fe/TiO_2 was determined using the discoloration and mineralization of RR84 under visible light. It is clear that the catalysts doped with iron are more efficient in the discoloration of the RR84 that the catalyst without doping under visible light. The catalytic converter doped with 0.25 mass% Fe was the most efficient one in the treatment (Fig. 4).

It has been emphasized that the photocatalytic oxidation of organic pollutants is carried out by the generation of electron-hole pairs. However, the recombination of electron-hole pairs generated can decrease the photocatalytic efficiency of TiO_2 .

The high levels of recombination may be limited by the insertion of traps of electrons and/or gaps, thus postponing the time of recombination. The effect of the Fe^{3+} described considering the efficiency of separation of electrons and holes generated. As a result of introducing the appropriate amount of Fe^{3+} the generated electron-hole pair, necessary for the discoloration of the RR84 and delay the degree of recombination of catalysts Fe/TiO₂ exposed to visible light was obtained.

However, when the concentration of Fe^{3+} is exceeded, the ions of Fe^{3+} can act as centers of recombination of electron-hole pair, decreasing the efficiency of Fe/TiO_2 catalysts. In this work, the best amount of Fe^{3+} was 0.25 mass%, and it could be observed that at a concentration greater than this the efficiency decreases.

Unlike the excitement inherent in the TiO_2 under UV light, the excitement of the Fe/TiO₂ under visible light arises from the electronic transfer of the energy levels of the ion doping (Fe³⁺ /Fe⁴⁺) to the conduction band of TiO₂.

The ion Fe³⁺ absorbs a photon ($\lambda \ge 400$ nm) to produce an ion Fe⁴⁺ and an electron in the conduction band of TiO₂. The electron from the conduction band reacts with the O₂ adsorbed to form O₂⁻, where the ion Fe⁴⁺ reacts with the hydroxyl ion to produce a hydroxyl radical (OH•) (Moradi et al., 2016).

When ions of iron are exposed to radiation visible pass Fe^{3+} to Fe^{4+} (oxidation). Subsequently, the electron ceded by the iron passes to titanium and it is taken advantage of by another ion of Fe^{3+} .

Once the Fe^{3+} is in contact with a molecule of oxidizing agent (H_2O_2) The dissociates in an ion hydroxyl (OH-) and a hydroxyl radical (OH•) (Fig. 5).

Mineralization of RR84 using Fe/TiO₂ at pilot scale

The assessment with the CPC reactor was conducted controlling the initial pH of the sample and the concentration of catalytic converter; while the factor that was not handled was the amount of energy accumulated in the reactor. It was calculated using the following equation:

$$Q_n = Q_{n-1} + \Delta t_n \overline{G_n} \frac{A_c}{V_T}$$
(17)

where t_n is the time experimental of each sample; \blacksquare is the average of the radiation during t_n ; A_C is the catchment area solar, V_T is the total volume of the solution occupied, Q_n is the incident energy used in the reactor and Q_{n-1} is the incident energy used in the reactor in the time prior to Q_n .

Figure 6 shows the results of the experiments with solar irradiation. It was observed that when using the catalysts doped with iron are required less energy to discolor the system with RR84 compared with the process of photolysis plus the H_2O_2 .

Fig. 5. Proposed mechanism for mineralization of RR84 under UV light and visible

Fig. 6. Decoloration and mineralization of the RR84 depending on the accumulated energy

The TSGF-0.25 catalyst required 3.87 kJ/L and photolysis plus the H_2O_2 needed 15.59 kJ/L, respectively to discolor to 100% the system. The TSGF-0.25 downgraded 77% of COT requiring 27.81 kJ/L and photolysis more the oxidizing agent degraded 32% of COT requiring 26.99 kJ/L. On the basis of these results it was confirmed the activation of Fe/TiO₂ under visible light using solar energy by doping with iron.

Conclusions

Experiments succeeded in synthesizing catalysts of TiO_2 and Fe/TiO_2 at the level of laboratory and bench scale that presented efficiencies of 100% with respect to the discoloration of the RR84. The visible light allowed the activation of the catalysts due to doping with iron. The doping with iron

achieved absorption in the visible spectrum of the catalysts. The dose of iron to the doping that allowed the best efficiency under visible light was TiO_2 -0.25 mass% Fe. An increase of the percentage of iron might be increasing the recombination of pair electron/hollow.

Acknowledgements

First author acknowledges the graduate studies scholarship granted by the Mexico's National Council for Science and Technology (*Consejo Nacional de Ciencia y Tecnología, CONACYT*, in Spanish). All authors gratefully acknowledge the collegial support and helpful academic discussions with Mrs. Dr. Tatiana Klimova and Dr. Thangarasu Pandiyan, from UNAM Facultad de Química, Mexico. Authors acknowledge the partial financial support to acquire materials, reagents, equipment use, etc., granted by the CONACYT Project 214352, by the UNAM DGAPA-PAPIIT Project IT100615, by the UNAM DGAPA-PAPIME Projects EN103704, PE101709, and PE100514, as well as by the UNAM FQ PAIP 50009067.

References

- Asiltürk, M., Sayilkan, F., Arpaç, E. 2009. Effect of Fe³⁺ ion doping to TiO₂ on the photocatalytic mineralization of Malachite Green dye under UV and Vis-irradiation. Journal of Photochemistry and Photobiology A: Chemistry. 203: 64-71.
- Bae, J., Freeman, H.S. 2007. Aquatic toxicity evaluation of new direct dyes to the *Daphnia magna*. Dyes and Pigments. 73: 81-85. http://doi.org/10.1016/j.dyepig.2005.10.015.
- Barrera-Andrade, J.M. 2016. Degradación de colorantes textiles en soluciones acuosas usando catalizadores mesoporosos de TiO₂/SiO₂ dopados con Fe. Tesis de Doctorado. Programa de Maestría y Doctorado en Ingeniería. Universidad Nacional Autónoma de México. México D.F. México. In Spanish.
- Barrera-Andrade, J.M. 2011. Preparación y caracterización de materiales de dióxido de titanio impregnados con hierro (Fe/TiO₂) empleando un compuesto modelo en disolución acuosa. Tesis de Maestría. Programa de Maestría y Doctorado en Ingeniería. Universidad Nacional Autónoma de México. México D.F. México. In Spanish.
- Campos-Gutiérrez R. 2017. *Reutilización de catalizadores de dióxido de titanio dopados con hierro en un reactor solar para el tratamiento de aguas residuales con Rojo Reactivo 84. Tesis de Maestría. Programa de Maestría y Doctorado en Ingeniería. Universidad Nacional Autónoma de México. México D.F. México.* In Spanish.
- Garcés-Giraldo, L.F., Peñuela-Mesa, G.A. 2007. *Tratamiento de aguas residuales de la industria textil por medio de la fotocatálisis. Producción + Limpia*. 2(1): 19-29. In Spanish.
- Gutiérrez-Díaz, M.A. 2015. Fotodecoloración de Azul Reactivo 69 como contaminante modelo en soluciones acuosas empleando materiales mesoporosos de titania impregnados con hierro (Fe/TiO₂) o con manganeso (TiO₂/Mn) sintetizadosen el laboratorio. Tesis de Maestría. Programa de Maestría y Doctorado en Ingeniería. Universidad Nacional Autónoma de México. México D.F. México. In Spanish.
- Lettmann, C., Hinrichs, H., Maier, W.F. 2001. Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed. 40:3160-3163.
- Li, Z., Shen, W., He, W., Zu, X. 2008. Effect of Fe-doped TiO₂ nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater. 155: 590-594.
- Li, Z., Shen, W., He, W., Zu, X. 2008. Effect of Fe-doped TiO₂ nanoparticle derived from modified hydrothermal process on the photocatalytic mineralization performance on methylene blue. J. Hazard. Mater. (155):590-594.
- Luu, C.L., Nguyen, Q.T., Ho, S.Th. 2010. Synthesis and characterization of Fe-doped TiO₂ photocatalyst by the sol-gel method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1.
- Moradi, H., Eshaghi, A., Rahman, S., Ghani, K. 2016. Fabrication of Fe-doped TiO₂ nanoparticles and investigation of photocatalytic decolorization of Reactive Red 198 under visible light irradiation. Ultrasonic Sonochemistry. 32:314-319.
- Muñoz-Rábago, E.J., Rodríguez-Ortiz, V. 2011. *Cinética de la decoloración de colorantes comerciales en una muestra modelo en presencia de un catalizador y luz UV. Tesina, Universidad Veracruzana. Facultad de Ciencias Químicas, Región Poza Rica-Tuxpan, Veracruz, México.* In Spanish.
- Nasralla, N., Yeganeh, M., Astuti, Y., Piticharoenphun, S., Shahtahmasebi, N. 2013. Sharif University of Technology: Structural and spectroscopic study of Fe-doped TiO₂ nanoparticles prepared by sol-gel method. Scientia Iranica. 20:1018–1022.
- Pey-Clemente, J. 2008. Aplicación de procesos de oxidación avanzada (Fotocatálisis solar) para el tratamiento y reutilización de efluentes textiles [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/2241. In Spanish.
- Pearce, C., Lloyd, J., Guthrie, J. 2003. The removal of color from textile wastewater using whole bacterial cells. Dyes and Pigments. 58: 179-196.
- Rajeshwar, K., De Tacconi, N.R., Chenthamarakshan, C.R. 2001. Semiconductor-based composite materials: Preparation, properties and performance Chem. Mater. B. 13(9):2765-2782.
- Reyes-Calle, J., Henao-Valencia, A.E., Ardila-Arias, A.N. 2015. *Degradación fotocatalítica de los colorantes Rojo Reactivo 120 y Azul Reactivo 4 hidrolizados usando TiO*² dopado con hierro y nitrógeno. Revista Politécnica. 11(20): 9-19. In Spanish.
- Safari, M., Talebi, R., Rostami, M.H., Nikazar, M., Dadvar, M. 2014. Synthesis of iron-doped TiO₂ for mineralization of Reactive Orange 16. Journal of Environmental Health Science and Engineering. 12:19-27.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896702/pdf/2052-336X-12-19.pdf

- Soo, C.W., Juan, J.C., Lai, C.W., Hamid-Abd, S.B., Yusop, R.M. 2016. Fe-doped mesoporous anatase-brookite titania in the solarlight-induced photodegradation of Reactive Black 5 dye. Journal of the Taiwan Institute of Chemical Engineers. 68:153-161. http://doi.org/10.1016/j.jtice.2016.08.025
- Subramonian, V., Wolf, E., Kamat, P.V. 2017. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO₂ films? J. Phys. Chem. B. 105:11439-11446.
- Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., Anpo, M. 2003. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO₂ catalysts: Fe ion-implanted TiO₂. Catal. Today. 84(3–4): 191-196.
- Wu, Ch.-H. 2008. Effects of operational parameters on the decolorization of C.I. Reactive Red 198 in UV/TiO₂-based systems. Dyes Pigm. 77(1):31-38.
- Yu, J., Zhou, M., Yu, H., Zhang, Q., Yu, Y. 2006. Enhanced photoinduced superhydrophilicity of the sol–gel-derivedTiO₂ thin films by Fe-doping. Mater. Chem. Phys. 95: 193-196.